crabbysearch/src/results/aggregator.rs
2025-02-16 16:35:39 +01:00

153 lines
6.5 KiB
Rust

//! This module provides the functionality to scrape and gathers all the results from the upstream
//! search engines and then removes duplicate results.
use super::user_agent::random_user_agent;
use crate::config::Config;
use crate::models::{
aggregation_models::{EngineErrorInfo, SearchResult, SearchResults},
engine_models::{EngineError, EngineHandler},
};
use error_stack::Report;
use futures::stream::FuturesUnordered;
use reqwest::{Client, ClientBuilder};
use std::sync::Arc;
use tokio::{task::JoinHandle, time::Duration};
/// A constant for holding the prebuilt Client globally in the app.
static CLIENT: std::sync::OnceLock<Client> = std::sync::OnceLock::new();
/// Aliases for long type annotations
type FutureVec =
FuturesUnordered<JoinHandle<Result<Vec<(String, SearchResult)>, Report<EngineError>>>>;
/// The function aggregates the scraped results from the user-selected upstream search engines.
/// These engines can be chosen either from the user interface (UI) or from the configuration file.
/// The code handles this process by matching the selected search engines and adding them to a vector.
/// This vector is then used to create an asynchronous task vector using `tokio::spawn`, which returns
/// a future. This future is awaited in another loop. Once the results are collected, they are filtered
/// to remove any errors and ensure only proper results are included. If an error is encountered, it is
/// sent to the UI along with the name of the engine and the type of error. This information is finally
/// placed in the returned `SearchResults` struct.
///
/// Additionally, the function eliminates duplicate results. If two results are identified as coming from
/// multiple engines, their names are combined to indicate that the results were fetched from these upstream
/// engines. After this, all the data in the `Vec` is removed and placed into a struct that contains all
/// the aggregated results in a vector. Furthermore, the query used is also added to the struct. This step is
/// necessary to ensure that the search bar in the search remains populated even when searched from the query URL.
///
/// Overall, this function serves to aggregate scraped results from user-selected search engines, handling errors,
/// removing duplicates, and organizing the data for display in the UI.
///
/// # Example:
///
/// If you search from the url like `https://127.0.0.1/search?q=huston` then the search bar should
/// contain the word huston and not remain empty.
///
/// # Arguments
///
/// * `query` - Accepts a string to query with the above upstream search engines.
/// * `page` - Accepts an u32 page number.
/// * `random_delay` - Accepts a boolean value to add a random delay before making the request.
/// * `debug` - Accepts a boolean value to enable or disable debug mode option.
/// * `upstream_search_engines` - Accepts a vector of search engine names which was selected by the
/// * `request_timeout` - Accepts a time (secs) as a value which controls the server request timeout.
/// user through the UI or the config file.
///
/// # Error
///
/// Returns an error a reqwest and scraping selector errors if any error occurs in the results
/// function in either `searx` or `duckduckgo` or both otherwise returns a `SearchResults struct`
/// containing appropriate values.
pub async fn aggregate(
query: &str,
page: u32,
config: actix_web::web::Data<Config>,
upstream_search_engines: &[EngineHandler],
) -> Result<SearchResults, Box<dyn std::error::Error>> {
let client = CLIENT.get_or_init(|| {
ClientBuilder::new()
.timeout(Duration::from_secs(config.request_timeout as u64)) // Add timeout to request to avoid DDOSing the server
.pool_idle_timeout(Duration::from_secs(
config.pool_idle_connection_timeout as u64,
))
.tcp_keepalive(Duration::from_secs(config.tcp_connection_keep_alive as u64))
.connect_timeout(Duration::from_secs(config.request_timeout as u64)) // Add timeout to request to avoid DDOSing the server
.https_only(true)
.gzip(true)
.brotli(true)
.http2_adaptive_window(config.adaptive_window)
.build()
.unwrap()
});
let user_agent: &str = random_user_agent();
let mut names: Vec<&str> = Vec::with_capacity(0);
// create tasks for upstream result fetching
let tasks: FutureVec = FutureVec::new();
let query: Arc<String> = Arc::new(query.to_string());
for engine_handler in upstream_search_engines {
let (name, search_engine) = engine_handler.clone().into_name_engine();
names.push(name);
let query_partially_cloned = query.clone();
tasks.push(tokio::spawn(async move {
search_engine
.results(&query_partially_cloned, page, user_agent, client)
.await
}));
}
// get upstream responses
let mut responses = Vec::with_capacity(tasks.len());
for task in tasks {
if let Ok(result) = task.await {
responses.push(result)
}
}
// aggregate search results, removing duplicates and handling errors the upstream engines returned
let mut result_map: Vec<(String, SearchResult)> = Vec::new();
let mut engine_errors_info: Vec<EngineErrorInfo> = Vec::new();
let mut handle_error = |error: &Report<EngineError>, engine_name: &'static str| {
log::error!("Engine Error: {:?}", error);
engine_errors_info.push(EngineErrorInfo::new(
error.downcast_ref::<EngineError>().unwrap(),
engine_name,
));
};
for _ in 0..responses.len() {
let response = responses.pop().unwrap();
let engine = names.pop().unwrap();
if result_map.is_empty() {
match response {
Ok(results) => result_map = results,
Err(error) => handle_error(&error, engine),
};
continue;
}
match response {
Ok(result) => {
result.into_iter().for_each(|(key, value)| {
match result_map.iter().find(|(key_s, _)| key_s == &key) {
Some(value) => value.1.to_owned().add_engines(engine),
None => result_map.push((key, value)),
};
});
}
Err(error) => handle_error(&error, engine),
};
}
let results: Vec<SearchResult> = result_map.iter().map(|(_, value)| value.clone()).collect();
Ok(SearchResults::new(results, &engine_errors_info))
}